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Abstract

The instability of circular liquid jet immersed in a coflowing high velocity air stream is studied assuming
that the flow of the viscous gas and liquid is irrotational. The basic velocity profiles are uniform and
different. The instabilities are driven by Kelvin–Helmholtz instability due to a velocity difference and neck-
down due to capillary instability. Capillary instabilities dominate for large Weber numbers. Kelvin–
Helmholtz instability dominates for small Weber numbers. The wavelength for the most unstable wave
decreases strongly with the Mach number and attains a very small minimum when the Mach number is
somewhat larger than one. The peak growth rates are attained for axisymmetric disturbances (n = 0) when
the viscosity of the liquid is not too large. The peak growth rates for the first asymmetric mode (n = 1) and
the associated wavelength are very close to the n = 0 mode; the peak growth rate for n = 1 modes exceeds
n = 0 when the viscosity of the liquid jet is large. The effects of viscosity on the irrotational instabilities are
very strong. The analysis predicts that breakup fragments of liquids in high speed air streams may be
exceedingly small, especially in the transonic range of Mach numbers.
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1. Introduction

The problem of an inviscid liquid jet in an inviscid compressible air stream was studied by
Chang and Russel (1965), Nayfeh and Saric (1973), Zhou and Lin (1992) and Li and Kelly
(1992). Chawla (1975) studied the stability of a sonic gas jet submerged in a liquid. Chang and
Russel (1965) and Nayfeh and Saric (1973) consider temporal instability and found that a singu-
larity in the growth rate occurs as the Mach number tends to unity. Chawla (1975) did not find a
singular growth rate but he restricted his attention to Mach number one (M = 1). Li and Kelly
(1992) found that the growth rates reach a sharp maximum when the gas velocity is slightly larger
than the one giving M = 1 for both axisymmetric and the first non-axisymmetric mode of insta-
bility. Lin (2003) cites Li and Kelly (1992) for the growth rate near M = 1 in the case of temporal
stability.

Here we extend the theory of viscous potential flow of a viscous compressible gas given by Jo-
seph (2003) to the case of perturbations in a compressible gas moving with uniform velocity. We
derive a dispersion relation for the perturbations which depend on all the material properties of
the incompressible liquid and compressible gas. The effects of shear are neglected, consistent with
the assumption that the basic flow can support a discontinuous velocity. We find a sharply peak-
ing growth rate at slightly supersonic value of the gas Mach number under the conditions that Li
and Kelly (1992) find steep changes for both axisymmetric and first asymmetric modes. The anal-
ysis of Li and Kelly (1992) differs from the one given here in the way that the isentropic flow is
represented. They assume that dp/dq = c2, as in isentropic flow, but they do not account for
the usual isentropic relations which tie the density, pressure and velocity together as in our Eq.
(4.3).

The first application of viscous potential flow to the problem of capillary instability was done
by Funada and Joseph (2002). The problem of combined Kelvin–Helmholtz and capillary insta-
bility for an incompressible liquid and gas was done by Funada et al. (2004) who treated also the
problem of convective and absolute instability in a comprehensive manner.

The effects of compressibility are very important for transonic and supersonic flow as has al-
ready been noted by Lin (2003). These effects include very great increases in growth rates and very
sharp decreases in the wavelength for maximum growth. This feature may possibly play a role in
the breakup of liquid droplets into fine drops and mist observed in shock tube and wind tunnel
experiments (Engel (1958), Joseph et al. (1999, 2002), Theofanous et al. (2003), Varga et al.
(2003)).

Chen and Li (1999) did a linear stability analysis for a viscous liquid jet issued into an inviscid
moving compressible gas medium. Their analysis differs from ours; they do not assume that mo-
tion of the liquid is irrotational; they give results only for the case in which the gas is at rest so that
the effects of the basic flow gas velocity is not connected to the basic flow density and pressure as
in the case of isotropic flow considered here. They do not compute growth rates for temporal
instabilities for supersonic values M > 1. Their growth rate curves do not exhibit the same great
increases in transonic and supersonic flow found by other authors and here.

The assumption that the gas is inviscid is not justified for jets of liquids into air especially when
the air velocity is large. What matters here is the ratios of kinematic viscosities (see Eq. (4.2) in
Funada et al. (2004) and Fig. 4 in Funada and Joseph (2001)) and the kinematic viscosity of high
speed air in isentropic flow can be much greater than the kinematic viscosity of water.
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Experimental results on liquid jets in high speed gas suitable for comparison with this and other
analytical studies are not available. The coaxial jet experiments of Varga et al. (2003) discussed in
Section 12 is suitable, but they do not present data for transonic and supersonic conditions.
Dunne and Cassen (1954, 1956) did some experiments on supersonic liquid jets. They injected high
speed jets into air with a spring-loaded injector (1954) and by subjecting the liquid reservoir to a
shock wave pressure (1956). These jets are transients and they appear to give rise to Rayleigh–
Taylor instabilities on the front face of the jet as in the problem of drop breakup in high speed
air and to Kelvin–Helmholtz wave at sides of the jets where the velocity is discontinuous. The data
presented by them is not suitable for comparison on the analysis given here.
2. Basic partial differential equations

For isentropic compressible fluids, the equation of continuity, the viscous stress tensor T and
the equation of motion are expressed, in usual notation with the velocity potential / for which
v = $/ and $ · v = 0, as
oq
ot

þr � ðqvÞ ¼ 0; hence
oq
ot

þ ðr/ � rÞqþ qr2/ ¼ 0; ð2:1Þ

T ij ¼ l
ovi
oxj

þ ovj
oxi

� �
� 2l

3
ðr � vÞdij ¼ 2l
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oxi oxj

� 2l
3
ðr2/Þdij; ð2:2Þ
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ot
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jr/j2 þ c

c� 1
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q
� 4
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l
q
r2/ ¼ BðtÞ. ð2:3Þ
The isentropic relation is given by
pq�c ¼ constant � A; hence p ¼ Aqc ð2:4Þ
with the adiabatic exponent c and the sound velocity c
c2 ¼ dp
dq

¼ c
p
q
. ð2:5Þ
These are used for viscous potential flow (VPF), which reduces to the inviscid potential flow (IPF)
when the viscosity vanishes.
3. Cylindrical liquid jet in a compressible gas

A cylindrical liquid jet is surrounded by a compressible gas and is addressed in 0 6 r < a (where
a is the radius of the cylindrical jet in an undisturbed state) and �1 < z <1 in the cylindrical
frame (r,h,z). The equation of continuity, the viscous stress tensor and Bernoulli function are
given for the compressible gas
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and for the liquid
q‘ ¼ constant; r2/‘ ¼ 0; T ð‘Þ
ij ¼ 2l‘

o2/‘

oxi oxj
;

o/‘

ot
þ 1

2
jr/‘j

2 þ p‘
q‘

¼ B‘ðtÞ.
ð3:2Þ
Boundary conditions at the interface r = a + g (where g = g(h,z, t) is the interface displacement)
are the kinematic conditions
og
ot

þ ðr/a � rÞg ¼ n � r/a;
og
ot

þ ðr/‘ � rÞg ¼ n � r/‘ ð3:3Þ
with the outer normal vector n
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and the normal stress balance
p‘ � pa þ niT
ðaÞ
ij nj

� �
� niT

ð‘Þ
ij nj

� �
¼ rr � n; ð3:5Þ
where r is the interfacial tension coefficient.
4. Basic isentropic relations

A basic state of the gas is with a uniform flow �va ¼ r�/a ¼ ð0; 0;U aÞ in the frame (r,h,z) and
with the constant density qa1 and pressure pa1, and a basic state of the liquid is with a uniform
flow �v‘ ¼ r�/‘ ¼ ð0; 0;U ‘Þ and with the constant density q‘1 and pressure p‘1. The isentropic rela-
tion and the Bernoulli function lead for the gas to
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;

ð4:1Þ
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where the Mach number Ma is defined as
Ma ¼
U a

ca
ð4:2Þ
and qa0, pa0 and ca0 ðc2a0 ¼ cpa0=qa0Þ are defined when Ma = 0.
Using (4.1), we have
�qa ¼
qa1
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¼ c� 1

2
M2

a þ 1
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2
U 2
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ð4:3Þ
in which the sound velocity ca is given as a function of Ua. The thermodynamic properties of the
ambient gas depend on the Mach number and the reference state when Ma = 0. For air of
qa0 = 1.2 kg/m3, pa0 = 1 atm = 1.013 · 105 Pa, ca0 = 340 m/s, and c = 1.4. When Ma = 1, (4.3)
gives c2a ¼ 2c2a0=ðcþ 1Þ for which ca = 310.38 m/s. The third equation in (4.3) shows that
ca = 0 m/s when Ma !1. Then U 2

a ¼ U 2
am ¼ 2c2a0=ðc� 1Þ where Uam = 760.26 m/s is the maxi-

mum air velocity.
The Bernoulli function for the liquid leads to
1

2
U 2

‘ þ
p‘1
q‘1

¼ B‘. ð4:4Þ
The kinematic conditions are satisfied for the unidirectional flows and the interface given by r = a.
The normal stress balance is given by
p‘1 � pa1 ¼
r
a
; ð4:5Þ
where r/a denotes the capillary pressure.
5. Linear stability of the cylindrical liquid jet in a compressible gas; dispersion equation

On the basic flows, small disturbances are superimposed as
/‘ ¼ U ‘zþ ~/‘; q‘ ¼ q‘1 ðno perturbationÞ; p‘ ¼ p‘1 þ ~p‘;

/a ¼ U azþ ~/a; qa ¼ qa1 þ ~qa; pa ¼ pa1 þ ~pa.
ð5:1Þ
The isentropic relation gives
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For the gas, we have the equations for the disturbance
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For the liquid, we have the equations for the disturbance
r2~/‘ ¼ 0;
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þ U ‘
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¼ 0. ð5:6Þ
At the interface r ¼ aþ ~g � a where ~g � ~gðh; z; tÞ is the interface displacement, the kinematic con-
ditions are given by
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and the normal stress balance is given, on eliminating the pressures by using the Bernoulli func-
tions, by
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The solution to the stability problem above formulated is expressed by normal modes
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where E � exp(ikz + inh � ixt) with the complex angular frequency x = xR + ixI and the real
wave number k, n denotes the azimuthal mode. In(kr) and Kn(jr) are the modified Bessel func-
tions, where the prime denotes the derivative I 0nðkaÞ ¼ dInðkaÞ=dðkaÞ. The Bessel functions satisfy
the equations
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Fig. 1. The form of a typical graph of the growth rate xI versus k. xIm is the maximum growth, km = 2p/km is the
wavelength of the fastest growing wave. kc is the cut-off wave number. xIm and km are called peak values.

26 T. Funada et al. / International Journal of Multiphase Flow 32 (2006) 20–50
which arise from (5.5) and (5.6). Substituting (5.9) into (5.7) and (5.8), we find the dispersion
relation
Table
Prope

Diam
Air vi
Air d
Water
Surfa
Ratio
½qa1ðx� kU aÞ2 � 2ilaðj2 � k2Þðx� kU aÞ�
kKnðjaÞ
jK 0
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� q‘1ðx� kU ‘Þ2

InðkaÞ
I 0nðkaÞ

þ 2ilakjðx� kU aÞ
K 00

nðjaÞ
K 0

nðjaÞ
� 2il‘k

2ðx� kU ‘Þ
I 00nðkaÞ
I 0nðkaÞ

þ r k2 � 1� n2

a2

� �
k ¼ 0. ð5:12Þ
The wave number km and maximum growth rate xIm given by xIm = maxxI(k) = xI(km) define
the disturbance which is expected to appear in experiments. A typical dispersion relation is shown
in Fig. 1. The cut-off wave number is the border of instability xI(kc) = 0.
6. Stability problem in dimensionless form

The scaling is made as
½length; velocity; time� ¼ ½d; ca; d=ca�; ð6:1Þ
1
rties of air–water

eter of liquid jet d 0.001 m
scosity la 1.8 · 10�5 N s/m2

ensity qa0 1.2 kg/m3

density q‘1 1000 kg/m3

ce tension coefficient r 0.075 N/m
of the specific heats c (air) 1.4
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Fig. 2. The growth rate xI versus k in the axisymmetric n = 0 mode for IPF, using the material parameters (Table 1) for
stationary water and air with Ua = 0, 30, 100 and 310.38 m/s. The values can be converted into dimensionless form
(M,W) using Table 2.

Table 2
Typical values and non-dimensional parameters for various Ua (U‘ = 0)

Ua, m/s ca pa1 qa1 ‘ M R W

0.00 3.400e+02 1.013e+05 1.200e+0 1.200e�03 0.000e+0 3.400e+05 6.488e�07
0.10 3.400e+02 1.013e+05 1.200e+0 1.200e�03 2.941e�04 3.400e+05 6.488e�07
0.20 3.400e+02 1.013e+05 1.200e+0 1.200e�03 5.882e�04 3.400e+05 6.488e�07
0.50 3.400e+02 1.013e+05 1.200e+0 1.200e�03 1.471e�03 3.400e+05 6.488e�07
1.00 3.400e+02 1.013e+05 1.200e+0 1.200e�03 2.941e�03 3.400e+05 6.488e�07
5.00 3.400e+02 1.013e+05 1.200e+0 1.200e�03 1.471e�02 3.400e+05 6.488e�07
10.00 3.400e+02 1.012e+05 1.199e+0 1.199e�03 2.941e�02 3.400e+05 6.489e�07
20.00 3.399e+02 1.011e+05 1.198e+0 1.198e�03 5.884e�02 3.399e+05 6.492e�07
50.00 3.393e+02 9.977e+04 1.187e+0 1.187e�03 1.474e�01 3.393e+05 6.516e�07
70.00 3.386e+02 9.833e+04 1.175e+0 1.175e�03 2.068e�01 3.386e+05 6.543e�07
100.00 3.370e+02 9.530e+04 1.149e+0 1.149e�03 2.967e�01 3.370e+05 6.602e�07
150.00 3.333e+02 8.816e+04 1.087e+0 1.087e�03 4.500e�01 3.333e+05 6.751e�07
200.00 3.280e+02 7.881e+04 1.003e+0 1.003e�03 6.097e�01 3.280e+05 6.970e�07
250.00 3.211e+02 6.787e+04 9.014e�01 9.014e�04 7.786e�01 3.211e+05 7.274e�07
300.00 3.124e+02 5.602e+04 7.860e�01 7.860e�04 9.603e�01 3.124e+05 7.684e�07
310.38 3.104e+02 5.351e+04 7.607e�01 7.607e�04 1.000e+00 3.104e+05 7.786e�07
350.00 3.018e+02 4.401e+04 6.616e�01 6.616e�04 1.160e+00 3.018e+05 8.233e�07
400.00 2.891e+02 3.258e+04 5.337e�01 5.337e�04 1.383e+00 2.891e+05 8.971e�07
450.00 2.740e+02 2.239e+04 4.082e�01 4.082e�04 1.642e+00 2.740e+05 9.987e�07
500.00 2.561e+02 1.395e+04 2.911e�01 2.911e�04 1.952e+00 2.561e+05 1.143e�06
550.00 2.347e+02 7.573e+03 1.882e�01 1.882e�04 2.343e+00 2.347e+05 1.361e�06
600.00 2.088e+02 3.338e+03 1.048e�01 1.048e�04 2.873e+00 2.088e+05 1.720e�06
650.00 1.764e+02 1.023e+03 4.505e�02 4.505e�05 3.686e+00 1.764e+05 2.412e�06
700.00 1.327e+02 1.395e+02 1.085e�02 1.085e�05 5.276e+00 1.327e+05 4.261e�06
750.00 5.568e+01 3.199e�01 1.413e�04 1.413e�07 1.347e+01 5.568e+04 2.419e�05
760.00 8.944e+00 8.832e�07 1.512e�08 1.512e�11 8.497e+01 8.944e+03 9.375e�04
760.20 4.381e+00 5.973e�09 4.262e�10 4.262e�13 1.735e+02 4.381e+03 3.908e�03
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Table 3
The table of peak values for l‘ = 1 cP in compressible gas

Ua l‘ = 1 cP n = 0 n = 1

R m xIm km kc xIm km kc

0.00 3.400e+05 1.500e+01 7.790e�04 1.387e+00 1.999e+00 – – –
0.50 3.400e+05 1.500e+01 7.797e�04 1.396e+00 1.999e+00 1.228e�07 1.027e�02 2.341e�01
10.00 3.400e+05 1.501e+01 1.140e�03 1.891e+00 3.583e+00 2.218e�05 1.666e�01 2.962e+00
100.00 3.370e+05 1.567e+01 5.905e�01 1.027e+02 1.999e+02 5.902e�01 1.027e+02 1.999e+02
310.38 3.104e+05 2.366e+01 3.033e+01 1.432e+03 3.790e+03 3.033e+01 1.432e+03 3.790e+03
500.00 2.561e+05 6.183e+01 6.707e+00 9.919e+02 2.359e+03 6.707e+00 9.919e+02 2.359e+03
600.00 2.088e+05 1.717e+02 2.950e+00 8.317e+02 1.837e+03 2.950e+00 8.317e+02 1.837e+03
700.00 1.327e+05 1.658e+03 3.401e+00 1.153e+03 2.062e+03 3.401e+00 1.153e+03 2.062e+03
750.00 5.568e+04 1.274e+05 1.038e+01 1.315e+03 2.350e+03 1.038e+01 1.315e+03 2.350e+03
760.20 4.381e+03 4.224e+10 1.391e+02 1.351e+03 2.413e+03 1.391e+02 1.351e+03 2.413e+03

Table 4
The table of peak values for l‘ = 300 cP in compressible gas

Ua l‘ = 300 cP n = 0 n = 1

R m xIm km kc xIm km kc

0.00 1.133e+03 5.000e�02 3.711e�04 9.325e�01 1.999e+00 – – –
0.50 1.133e+03 5.000e�02 3.713e�04 9.325e�01 1.999e+00 5.698e�08 1.000e�02 1.360e�02
10.00 1.133e+03 5.002e�02 4.635e�04 1.207e+00 2.683e+00 1.735e�05 5.815e�02 1.801e�01
100.00 1.123e+03 5.223e�02 4.801e�02 2.026e+01 1.585e+02 4.755e�02 2.089e+01 1.585e+02
310.38 1.035e+03 7.887e�02 1.515e+00 1.657e+02 1.522e+03 1.515e+00 1.657e+02 1.522e+03
500.00 8.537e+02 2.061e�01 9.396e�02 1.144e+01 4.645e+01 9.367e�02 1.126e+01 4.645e+01
600.00 6.960e+02 5.723e�01 3.802e�02 6.985e+00 2.341e+01 3.809e�02 6.391e+00 2.323e+01
700.00 4.422e+02 5.528e+00 4.186e�03 2.638e+00 6.148e+00 7.160e�03 1.252e+00 5.473e+00
750.00 1.856e+02 4.246e+02 2.437e�03 1.027e+00 2.233e+00 2.471e�03 3.916e�01 1.135e+00
760.20 1.460e+01 1.408e+08 2.910e�02 9.496e�01 2.053e+00 3.356e�02 3.970e�01 1.135e+00

Table 5
The table of peak values for l‘ = 800 cP in compressible gas

Ua l‘ = 800 cP n = 0 n = 1

R m xIm km kc xIm km kc

0.00 4.250e+02 1.875e�02 2.006e�04 6.769e�01 1.999e+00 – – –
0.50 4.250e+02 1.875e�02 2.006e�04 6.778e�01 1.999e+00 – – –
10.00 4.250e+02 1.876e�02 2.324e�04 8.884e�01 2.683e+00 1.490e�05 3.943e�02 1.108e�01
100.00 4.213e+02 1.959e�02 1.972e�02 1.216e+01 1.585e+02 1.929e�02 1.360e+01 1.585e+02
310.38 3.880e+02 2.958e�02 7.069e�01 1.135e+02 1.522e+03 7.072e�01 1.144e+02 1.522e+03
500.00 3.202e+02 7.729e�02 3.912e�02 5.365e+00 2.845e+01 4.268e�02 3.997e+00 2.836e+01
600.00 2.610e+02 2.146e�01 1.451e�02 3.592e+00 1.432e+01 2.093e�02 1.747e+00 1.414e+01
700.00 1.658e+02 2.073e+00 1.264e�03 1.396e+00 4.402e+00 5.576e�03 5.752e�01 3.430e+00
750.00 6.960e+01 1.592e+02 1.277e�03 7.309e�01 2.179e+00 1.945e�03 2.251e�01 6.688e�01
760.20 5.476e+00 5.280e+07 1.561e�02 6.805e�01 2.008e+00 2.644e�02 2.368e�01 6.832e�01
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with d = 2a. The dimensionless variables are
Table
The ta

Ua

0.00
0.50
10.00
100.00
310.38
500.00
600.00
700.00
750.00
760.20

Fig
ðr̂; h; ẑÞ ¼ r
d
; h;

z
d

� �
; t̂ ¼ ca

d
t. ð6:2Þ
6
ble of peak values for l‘ = 8000 cP in compressible gas

l‘ = 8000 cP n = 0 n = 1

R m xIm km kc xIm km kc

4.250e+01 1.875e�03 2.656e�05 2.431e�01 1.999e+00 – – –
4.250e+01 1.875e�03 2.656e�05 2.431e�01 1.999e+00 – – –
4.250e+01 1.876e�03 2.762e�05 4.177e�01 2.683e+00 8.636e�06 1.252e�02 3.556e�02
4.213e+01 1.959e�03 2.069e�03 8.065e+00 1.585e+02 2.219e�03 8.326e�01 1.585e+02
3.880e+01 2.958e�03 1.096e�01 5.104e+01 1.513e+03 1.094e�01 5.338e+01 1.513e+03
3.202e+01 7.729e�03 2.469e�03 1.828e+00 2.143e+01 1.646e�02 8.902e�01 1.981e+01
2.610e+01 2.146e�02 6.813e�04 1.387e+00 1.333e+01 9.624e�03 5.635e�01 1.234e+01
1.658e+01 2.073e�01 1.026e�04 6.481e�01 3.817e+00 2.388e�03 2.584e�01 2.386e+00
6.960e+00 1.592e+01 1.635e�04 2.692e�01 2.170e+00 1.025e�03 5.671e�02 1.990e�01
5.476e�01 5.280e+06 2.061e�03 2.431e�01 1.999e+00 1.348e�02 5.977e�02 2.161e�01
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. 3. (a) The maximum growth rate xIm versus M and (b) km versus M for IPF of n = 0 in compressible gas.
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The hat on the independent variables are omitted for brevity. Then we may scale as
Fig. 4
gas.
/‘

cad
¼ U ‘

ca
ẑþ

~/‘

cad
¼ M ‘ẑþ /̂‘;

q‘

q‘1

¼ 1;
p‘

q‘1c2a
¼ �p‘1 þ

~p‘
q‘1c2a

¼ �p‘1 þ p̂‘;

/a

cad
¼ U a

ca
ẑþ

~/a

cad
¼ Maẑþ /̂a;

qa

qa1

¼ qa1

qa1

þ ~qa

qa1

¼ 1þ q̂a; p̂a ¼
~pa

q‘1c2a
¼ ~qa

q‘1

¼ ‘q̂a;

ð6:3Þ
where � denotes the normalized basic flow and ^ denotes the normalized disturbances, and the
parameters are defined as
‘ ¼ qa1

q‘1

; m ¼ la

l‘

; m ¼ la

l‘

q‘1

qa1

¼ m
‘
; M ‘ ¼

U ‘

ca
; Ma ¼

U a

ca
;

R ¼ q‘1cad
l‘

; W ¼ r

q‘1dc
2
a

; ð6:4Þ
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. (a) The maximum growth rate xIm versus M and (b) km versus M for VPF (l‘ = 1 cP) of n = 0 in compressible
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where the basic state of the gas is the function of the Mach number, with
Fig. 5
gas.
qa1

qa0

¼ QðMaÞ�1=ðc�1Þ
; where QðMaÞ �

c� 1

2
M2

a þ 1;

‘ ¼ ‘0QðMaÞ�1=ðc�1Þ
; ‘0 ¼ qa0=q‘1;

pa1
pa0

¼ qa1

qa0

� �c

;
c2a
c2a0

¼ 1

QðMaÞ
;

R ¼ R0=QðMaÞ; R0 ¼
q‘1ca0d

l‘

; W ¼ W 0QðMaÞ; W 0 ¼
r

q‘1dc
2
a0

;

1

2
M2

‘ þ �p‘1 ¼ constant.

ð6:5Þ
For the gas,
o

ot
þMa

o

oz

� �
q̂a þr2/̂a ¼ 0; ‘

o

ot
þMa

o

oz

� �
/̂a þ p̂a �

4m
3R

r2/̂a ¼ 0. ð6:6Þ
The combination leads to
o

ot
þMa

o

oz

� �2

/̂a ¼ 1þ 4m
3‘R
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ot
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o

oz

� �� �
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. (a) The maximum growth rate xIm versusM and (b) km versusM for VPF (l‘ = 300 cP) of n = 0 in compressible
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For the liquid,
Fig. 6
gas (s
r2/̂‘ ¼ 0;
o

ot
þM ‘

o

oz

� �
/̂‘ þ p̂‘ ¼ 0. ð6:8Þ
At the interface r ¼ 1=2þ ĝ � 1=2 where ĝ � ĝðh; z; tÞ is the interface displacement, the kinematic
conditions are given by
oĝ
ot

þM ‘

oĝ
oz

¼ o/̂‘

or
;

oĝ
ot

þMa
oĝ
oz

¼ o/̂a

or
ð6:9Þ
and the normal stress balance is given by
�‘
o
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þMa

o

oz

� �
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2m
R
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The solution to the stability problem above formulated is expressed as
Fig.
[1,2,3
maxim
maxim
(M =
attain
/̂‘ ¼ �i
x� kM ‘

kI 0nðk=2Þ
Ĥ InðkrÞE þ c.c.; /̂a ¼ �i

x� kMa

jK 0
nðj=2Þ

ĤKnðjrÞE þ c.c.;

ĝ ¼ ĤE þ c.c.;

ð6:11Þ
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7. Growth rate versus wave number for stationary liquid jet (U‘ = 0) in transonic air. Ua =
,4,5,6,7] = [290.08,302.08,314.08,326.08,340.08,356.08,370.08] m/s. (a) l‘ = 0.15 cP: as Ua increases, the
um growth rate marked by + increases monotonically without limit, (b) l‘ = 0.175 cP: as Ua increases, the
um growth rate marked by + increases, changes to another peak, attains the maximum near Ua = 310.38 m/s
1), and then decreases and (c) l‘ = 0.5 cP: as Ua increases, the maximum growth rate marked by + increases,
s the maximum near Ua = 310.38 m/s (M = 1), and then decreases.
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where E � exp(ikz + inh � ixt) with the complex angular frequency x = xR + ixI and the real
wave number k, In(kr) and Kn(jr) are the modified Bessel functions, the prime denotes the deriv-
ative: I 0nðk=2Þ ¼ dInðk=2Þ=dðk=2Þ, and j is defined as
Table
Table

M

0.00
0.50
0.75
1.00
1.10
1.50
2.00

Table
Table

M

0.00
0.50
0.75
1.00
1.10
1.50
2.00

Table
Table

M

0.00
0.50
0.75
1.00
1.10
1.50
2.00
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � h2

1� 4im
‘R h

s
; ð6:12Þ
7
of peak values of n = 0 and n = 1 for various M, IPF in compressible gas

n = 0 n = 1

xIm km kc xIm km kc

7.821e�04 1.396e+00 2.008e+00 – – –
3.000e+00 2.989e+02 4.483e+02 3.000e+00 2.989e+02 4.483e+02
1.149e+01 7.192e+02 1.081e+03 1.149e+01 7.147e+02 1.081e+03
7.853e+01 3.169e+03 4.933e+03 7.853e+01 3.169e+03 4.933e+03
2.302e+02 1.540e+04 2.107e+04 2.302e+02 1.540e+04 2.107e+04
1.120e+03 2.656e+05 2.755e+05 1.120e+03 2.656e+05 2.755e+05
1.576e+03 8.560e+05 8.632e+05 1.576e+03 8.560e+05 8.632e+05

8
of peak values for various M (VPF: l‘ = 1 cP, m = 1.8 · 10�2)

n = 0 n = 1

xIm km kc xIm km kc

7.790e�04 1.387e+00 2.008e+00 – – –
2.759e+00 2.845e+02 5.869e+02 2.759e+00 2.845e+02 5.869e+02
1.007e+01 6.670e+02 1.666e+03 1.007e+01 6.670e+02 1.666e+03
3.033e+01 1.432e+03 3.799e+03 3.033e+01 1.432e+03 3.799e+03
2.673e+01 1.621e+03 3.871e+03 2.673e+01 1.621e+03 3.871e+03
1.161e+01 1.297e+03 2.998e+03 1.161e+01 1.297e+03 2.998e+03
6.363e+00 9.703e+02 2.314e+03 6.363e+00 9.703e+02 2.314e+03

9
of peak values for various M (VPF: l‘ = 300 cP, m = 6 · 10�5)

n = 0 n = 1

xIm km kc xIm km kc

3.711e�04 9.325e�01 2.008e+00 – – –
1.457e�01 4.123e+01 4.492e+02 1.453e�01 4.186e+01 4.492e+02
3.735e�01 7.651e+01 1.072e+03 3.731e�01 7.723e+01 1.072e+03
1.515e+00 1.657e+02 1.531e+03 1.515e+00 1.657e+02 1.531e+03
3.803e�01 2.458e+01 1.603e+02 3.897e�01 2.413e+01 1.603e+02
1.497e�01 1.495e+01 6.733e+01 1.501e�01 1.477e+01 6.733e+01
8.965e�02 1.117e+01 4.492e+01 8.934e�02 1.090e+01 4.483e+01
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where
Table
Table

M

0.00
0.50
0.75
1.00
1.10
1.50
2.00

Fig. 8
noted
h ¼ x� kMa; h‘ ¼ x� kM ‘. ð6:13Þ

Therefore the dispersion relation is expressed as
‘h2 � 2im
R

ðj2 � k2Þh
� �

k
j
aan þ h2‘an þ

2imkj
R

hban þ
2ik2

R
h‘bln ¼ W ðk2 þ 4n2 � 4Þk; ð6:14Þ
10
of peak values for various M (VPF: l‘ = 8000 cP, m = 2.25 · 10�6)

n = 0 n = 1

xIm km kc xIm km kc

2.656e�05 2.431e�01 2.008e+00 – – –
6.081e�03 1.153e+01 4.492e+02 5.959e�03 1.666e+01 4.492e+02
1.507e�02 2.260e+01 1.072e+03 1.494e�02 2.989e+01 1.072e+03
1.096e�01 5.113e+01 1.522e+03 1.095e�01 5.338e+01 1.522e+03
1.485e�02 3.511e+00 9.685e+01 2.818e�02 3.268e+00 9.712e+01
4.978e�03 2.251e+00 3.223e+01 2.056e�02 1.270e+00 2.989e+01
2.301e�03 1.801e+00 2.080e+01 1.604e�02 8.641e�01 1.927e+01
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. (a) The maximum growth rate xIm versus R and (b) km versus R, for M = 0 and n = 0 in compressible gas. It is
for M = 0 that the capillary instability may arise only for n = 0, but K–H instability does not arise yet.
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with
Fig. 9
and n

maxim
a‘n ¼
Inðk=2Þ
I 0nðk=2Þ

; aan ¼ �Knðj=2Þ
K 0

nðj=2Þ
; b‘n ¼

I 00nðk=2Þ
I 0nðk=2Þ

; ban ¼ �K 00
nðj=2Þ

K 0
nðj=2Þ

; ð6:15Þ
and ‘ = ‘0Q(Ma)
�1/(c�1), R = R0/Q(Ma), W =W0Q(Ma) defined under (6.5).
0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000

0.1

1

10

100

1000

1 10 100 1000 10000

0.001

0.01

0.01 0.1 1 10   1000100 10000

(a)

(b)

(c)

. (a) The maximum growth rate xIm versus R, (b) km versus R, for M = 0.5; n = 0 in compressible gas (solid line)
= 1 in compressible gas (dashed line), (c) the growth rate curve xI versus k which is shown here has two relative
a; the absolute maxima changes for R0 between 25 and 26; this is seen as a jump in k in (b).
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It is sometimes convenient to change the frame of the analysis to one moving with the liquid
velocity U‘. In this frame the undisturbed liquid jet is at rest and the gas moves with velocity
UA = Ua � U‘. This is a Galilean change of frame in which the new coordinates are
Fig. 1
line) a
z0 ¼ zþ U ‘t ð6:16Þ

and
E ¼ expðikzþ inh� ixRt þ xItÞ ¼ expðikz0 þ inh� iXRt þ xItÞ; ð6:17Þ

where
XR ¼ xR þ U ‘k ð6:18Þ

in a new frequency. However, the density, pressure and sound speed of the gas are determined by
the ambient conditions and gas velocity, as in (4.3), and these quantities do not change in a Gal-
ilean change of frame. For this reason, problems of stability of liquid jets in which Ua and U‘ are
given, as in the experiments of Varga et al. (2003) discussed in Section 12, are not simplified by a
Galilean change of frame. In the analysis given in Sections 7–11 we putM‘ = 0 andMa =M. This
is the case of a static liquid cylinder in a moving gas.

In nearly all the computations to follow, ‘0, R0 andW0 are evaluated under standard conditions
for air–water given in Table 1. In Section 11 we allow W0 to vary; this can be thought to be the
effect of changing surface tension.
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0. (a) The maximum growth rate xIm versus R and (b) km versus R, for M = 2; n = 0 in compressible gas (solid
nd n = 1 in compressible gas (dashed line).
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7. Inviscid potential flow (IPF)

The problem of an inviscid liquid jet moving in an inviscid compressible gas was considered by
Li and Kelly (1992). The dispersion relation for this problem is (6.14) with R!1 and m/R = 0,
Fig. 1
gas.
j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðx� kMÞ2

q
; ‘ðx� kMÞ2 k

j
aan þ x2a‘n ¼ W ðk2 þ 4n2 � 4Þk. ð7:1Þ
The parameters of this problem are ‘, n, M and W.
Pure capillary instability arises in the axisymmetric n = 0 mode for large W and in the inviscid

case is independent of the gas. The case W = 0 is associated with pure Kelvin–Helmholtz insta-
bility for every n mode and it cannot occur in a vacuum (‘ 5 0). The variation of xI versus k
for an inviscid water in air is given in Fig. 2 with the n = 0 mode.

The variation of growth rates withM for particular values of k, r, Ua was given by Li and Kelly
(1992); they did not present graphs of peak growth rates xIm and km as a function of M. At very
high values of the Mach number
‘ ¼ ‘0=Q
2:5 ! ‘0=M5 ð7:2Þ
and the first term of (7.1) may be neglected. Growth rate curves for IPF under standard condition
and different Mach numbers are shown in Fig. 2.
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1. (a) The maximum growth rate xIm versus W�1 and (b) km versus W�1; IPF, M = 0.5 for n = 0 in compressible
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8. Data for liquid jets with different viscosities in an air stream

In this section the data for stability computations is assembled in Tables 2–6. In Table 2, we list
the parameters for air under standard conditions and the liquid density, surface tension coefficient
and the jet radius used in all the computations.

Tables 3–6 list the data used in the stability computations and the results of these computations.
Each table gives results for one of four viscosities: 1, 300, 800 and 8000 cP. For each viscosity,
computations were made for 27 values of Ua (Table 2) and the results of 10 cases are shown in
Tables 3–6. Given l‘, Ua and the data in Table 2 the values of the material and dimensionless
parameters are determined and listed in the columns of Tables 3–6. Maximum value xIm of the
growth rate, the wave number km for xIm = xI(km) and the wave number kc for which xI(kc) = 0
(see Fig. 1. for a graphical representation of these values). Given (Ua, l‘) one may find values of
M, ‘, W and R for a dimensionless representation.

Using the parameters of Table 1, the viscosity ratio is evaluated as m = 1.8 · 10�2 and the other
basic non-dimensional parameters which depends on Ua are shown in Table 2. Negative values
xI < 0 arise for non-axisymmetric n = 1 disturbances when Ua is small. The entries in the columns
n = 1 in tables are left blanks.
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Fig. 12. (a) The maximum growth rate xIm versusW�1 and (b) km versusW�1, VPF,M = 0.5 for l‘ = 1 cP, for n = 0 in
compressible gas.
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9. Variation of the maximum growth rate parameters with M for different values
of liquid viscosity

The variation of xIm and km with M are displayed for l‘ = 0, 1 and 300 cP in Figs. 3–5. Results
for l‘ = 8000 cP are displayed in Fig. 6; this is a low R case for which the mode with n = 1 can be
most dangerous. Otherwise xIm and km for the modes with n = 0 and n = 1 are essentially the
same.

In Fig. 7 we blow up the sharply peaking growth rate curves xI versus k for stationary liquid
jets of small viscosity in high speed transonic air. The Mach numbers for the seven curves are
[1,2,3,4,5,6,7] = [0.92,0.96,0.98,1.01,1.05,1.08,1.25] when l‘ = 0.15 cP and l‘ = 0.175 cP and
for the nine curves [1,2,3,4,5,6,7,8,9] = [0.92,0.96,1.00,1.05,1.06,1.12,1.15,1.20,1.25] when
ll = 0.5 cP. (Tables 7–10).
10. Azimuthal periodicity of the most dangerous disturbance

Batchelor and Gill (1962) argued that the conditions at the origin of a cylinder are such as
to make the axisymmetric (n = 0) mode and the n = 1 mode of azimuthal periodicity most
dangerous; all the modes except n = 1 require that the radial and azimuthal components of the
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Fig. 13. (a) The maximum growth rate xIm versus W�1 and (b) km versus W�1. VPF, M = 0.5 for l‘ = 300 cP; n = 0 in
compressible gas (solid line) and n = 1 in compressible gas (dashed line).
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disturbance velocity vanish. The axial component of the disturbance velocity is single-valued only
when n = 0 (see Joseph (1976, pp. 73, 74)). Typical graphs showing the variation of these quan-
tities with the Reynolds number for M = 0,M = 0.5 andM = 2 are shown as Figs. 8–10. Only the
axisymmetric (n = 0) mode gives rise to instability when M = 0 (Fig. 8). Inspection of Figs. 9 and
10 show that the most dangerous mode is n = 1 only for Reynolds numbers smaller than a number
near 100; for larger Reynolds numbers the maximum growth rate and the most dangerous wave
number are nearly the same for n = 0 and n = 1.
11. Variation of the growth rate parameters with the Weber number

Graphs of xIm and km versus W�1 are displayed for typical cases in Figs. 11–14. When W is
large, the instability is dominated by capillarity; when W is small Kelvin–Helmholtz instability
dominates. This behavior is characteristic also for the liquid jet in an incompressible gas which
was studied by Funada et al. (2004); they used W�1 rather than W following earlier literature.

We have shown in Section 9 that the most dangerous mode is typically axisymmetric when the
Reynolds number is larger than about 100 as is true for the cases considered here. The graphs are
all similar; for small values of W�1 in which capillarity dominates the values of log xIm decrease
linearly with log W�1 giving rise to a power law xIm = a(W�1)p where a and p may be determined
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Fig. 14. (a) The maximum growth rate xIm versus W�1 and (b) km versus W�1, VPF, M = 2 for l‘ = 800 cP, for n = 0
in compressible gas.
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from the graphs. The most dangerous wave number km = 1.396 is a universal value which max-
imizes xI when surface tension dominates. All the growth rate curves have a minimum value
which marks the place where Kelvin–Helmholtz instability starts to be important, after this min-
imum xIm and km increase with W�1. In all case km !1 as W�1 !1, but xIm is lowered as
W�1 ! 1 when the liquid viscosity is not zero (Tables 11–14).
Table 11
IPF, M = 0.5

W�1 n = 0 n = 1

xIm km kc xIm km kc

1.00e�01 3.071e+00 1.396e+00 – – – –
1.00e+00 9.710e�01 1.396e+00 – – – –
1.00e+01 3.072e�01 1.396e+00 – – – –
1.00e+02 9.770e�02 1.405e+00 – – – –
1.00e+03 3.272e�02 1.468e+00 – – – –
1.00e+04 2.062e�02 2.485e+00 – 4.306e�03 8.614e�01 –
1.00e+05 1.865e�01 2.008e+01 2.656e+01 1.833e�01 1.990e+01 2.539e+01
1.00e+06 2.037e+00 2.035e+02 – 2.037e+00 2.035e+02 2.710e+02

Table 12
VPF, M = 0.5 for l‘ = 1 cP

W�1 n = 0 n = 1

xIm km kc xIm km kc

1.00e�01 3.071e+00 1.396e+00 1.999e+00 – – –
1.00e+00 9.710e�01 1.396e+00 1.999e+00 – – –
1.00e+01 3.072e�01 1.396e+00 1.999e+00 5.123e�08 3.862e�04 1.495e�01
1.00e+02 9.769e�02 1.405e+00 2.026e+00 1.109e�06 2.251e�03 6.967e�01
1.00e+03 3.272e�02 1.468e+00 2.287e+00 4.767e�06 9.766e�03 1.504e+00
1.00e+04 2.061e�02 2.485e+00 5.338e+00 4.304e�03 8.605e�01 4.618e+00
1.00e+05 1.854e�01 1.999e+01 4.024e+01 1.822e�01 1.990e+01 4.015e+01
1.00e+06 1.921e+00 1.963e+02 3.988e+02 1.921e+00 1.963e+02 3.988e+02

Table 13
VPF, M = 0.5 for l‘ = 300 cP

W�1 n = 0 n = 1

xIm km kc xIm km kc

1.00e�01 3.070e+00 1.396e+00 1.999e+00 – – –
1.00e+00 9.701e�01 1.396e+00 1.999e+00 – – –
1.00e+01 3.063e�01 1.396e+00 1.999e+00 – – 8.686e�03
1.00e+02 9.677e�02 1.396e+00 2.008e+00 1.108e�06 6.931e�04 4.033e�02
1.00e+03 3.172e�02 1.450e+00 2.107e+00 4.758e�06 2.755e�03 8.326e�02
1.00e+04 1.784e�02 2.314e+00 3.502e+00 3.862e�03 8.011e�01 1.288e+00
1.00e+05 7.341e�02 1.126e+01 2.962e+01 7.055e�02 1.126e+01 2.944e+01
1.00e+06 1.396e�01 3.538e+01 3.052e+02 1.391e�01 3.583e+01 3.052e+02



Table 14
VPF, M = 2 for l‘ = 800 cP

W�1 n = 0 n = 1

xIm km kc xIm km kc

1.00e�01 3.068e+00 1.396e+00 1.999e+00 – – –
1.00e+00 9.679e�01 1.387e+00 1.999e+00 – – 9.964e�03
1.00e+01 3.040e�01 1.387e+00 1.999e+00 – – 2.890e�02
1.00e+02 9.455e�02 1.378e+00 2.017e+00 – – 5.959e�02
1.00e+03 2.992e�02 1.405e+00 2.224e+00 – – –
1.00e+04 2.312e�02 3.097e+00 5.203e+00 3.096e�02 1.819e+00 4.078e+00
1.00e+05 3.464e�02 4.807e+00 1.207e+01 3.919e�02 3.367e+00 1.189e+01
1.00e+06 3.728e�02 5.257e+00 2.935e+01 4.094e�02 3.844e+00 2.926e+01
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12. Coaxial jets

The problem of a liquid jet in a compressible gas flow is encountered in atomization experi-
ments in coaxial jets discussed by Varga et al. (2003). They observed that the jet undulates due
to Kelvin–Helmholtz instability and in the undulated configuration is at an angle to the air.
The air stream then has a component normal to the KH waves giving rise to a secondary Ray-
leigh–Taylor instability which they claim is the primary cause of breakup. The analysis of this sec-
ondary instability is beyond the scope of our linear theory.

Varga et al. (2003) gave experimental results for jets of water and ethanol of different diameter
and various jet speeds U‘ and air speeds ranging flow 40–165 m/s. The air speeds are subsonic and
even at the highest air speed (165 m/s) the effects of compressibility are modest. We carried out
calculations for some of their experiments with data summarized in Table 15. The growth rate
curves in all these cases are like that shown in Fig. 1 so that it will suffice to present the results
in the forms of tables of maximum growth rate parameters. In all cases, the growth rates are larger
for the axisymmetric mode n = 0 than for the mode with n = 1. However the maximum growth
rates for n = 1 are not much smaller so that mixture of these modes might be expected to occur
in experiments. Mixed modes are existent in the experiments of Varga et al. (2003).

In Figs. 15 and 16 we present graphs of xIm, km and kc versus U‘ for coaxial jets of liquid
into air studied by Varga et al. (2003) when Ua = 40 m/s under conditions listed in Tables
16. In Fig. 17 the same data is given for Ua = 165 m/s and in Fig. 18 for Ua = 265 m/s (Tables
17–19).
Table 15
(Varga et al., 2003) Fluid properties

Fluid Density (kg m�3) Viscosity (Pa s) Surface tension (N/m)

Air 1.2 1.8 · 10�5 –
Water 998 1.0 · 10�3 0.070
Ethanol 791 1.2 · 10�3 0.023
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13. Convective/absolute (C/A) instability

C/A instability is used to determine when the spatial theory of instability makes sense. Practi-
cally, this comes down to a determination of the conditions under which a disturbance from a
localized source will propagate downstream without corrupting the source. The disturbance
may grow as it propagates but after it passes over a fixed point it leaves the flow undisturbed. This
is the case for convectively unstable flows, but absolutely unstable flows propagate both upstream
and downstream. Propagation of disturbances from a vibrating ribbon in a boundary layer or
Poiseuille flow are examples. For such propagation these flows must be convectively and not abso-
lutely unstable.
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The study of stability of disturbances issuing from a fixed source, leading to C/A theory, is not
a complete stability theory; the traditional temporal theory of instability needs also to be consid-
ered. The temporal theory determines the conditions under which disturbances at a fixed point
will grow or decay. If these conditions are such that all disturbances decay, then disturbances
from a fixed point will decay. Disturbances which are convectively or absolutely unstable are also
temporally unstable. The propagation of impulses from a source in a convectively unstable flow
can be realized provided the growth rates and amplitudes of temporally unstable flows do not cor-
rupt the flow first. This is why experiments with vibrating ribbons are always done with care to
suppress background noise which may amplify in time a fixed point.



Table 16
xIm, km and kc for Ua = 40 m/s U‘ = 60, 160, 260, 360, 460, 560, 660, 760 m/s. (1) water n = 0, (2) water n = 1, (3)
ethanol n = 0 and (4) ethanol n = 1

Compressible gas

U‘ xIm km kc

(1) 60 2.067e�01 3.601e+01 6.904e+01
160 1.396e�03 1.423e+00 2.116e+00
260 1.500e�01 2.926e+01 4.321e+01
360 1.647e+00 1.414e+02 2.053e+02
460 1.106e+01 4.888e+02 1.018e+03
560 1.347e+01 7.597e+02 1.585e+03
660 1.200e+01 7.444e+02 1.567e+03
760 1.226e+01 7.408e+02 1.567e+03

(2) 60 2.057e�01 3.601e+01 6.895e+01
160 9.133e�06 6.310e�02 1.144e+00
260 1.489e�01 2.917e+01 4.312e+01
360 1.647e+00 1.414e+02 2.053e+02
460 1.106e+01 4.888e+02 1.018e+03
560 1.347e+01 7.597e+02 1.585e+03
660 1.200e+01 7.444e+02 1.567e+03
760 1.226e+01 7.408e+02 1.567e+03

(3) 60 6.305e�01 1.009e+02 1.900e+02
160 9.394e�04 1.477e+00 2.260e+00
260 4.663e�01 8.236e+01 1.387e+02
360 4.354e+00 3.610e+02 7.201e+02
460 2.093e+01 8.866e+02 1.810e+03
560 2.076e+01 9.910e+02 1.954e+03
660 1.724e+01 8.947e+02 1.783e+03
760 1.674e+01 8.461e+02 1.693e+03

(4) 60 6.302e�01 1.009e+02 1.900e+02
160 2.000e�05 1.252e�01 1.387e+00
260 4.658e�01 8.236e+01 1.387e+02
360 4.353e+00 3.610e+02 7.201e+02
460 2.092e+01 8.866e+02 1.810e+03
560 2.076e+01 9.910e+02 1.954e+03
660 1.724e+01 8.947e+02 1.783e+03
760 1.674e+01 8.461e+02 1.693e+03
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Li and Kelly (1992) considered the convective and absolute instability of an inviscid liquid jet in
an air stream of an inviscid compressible gas. They motivated their study by experiments on the
instability and breakup of liquid fuel jets in crossflow. They note that
‘‘. . . the breakup of the jet, however, does not seem to proceed in the gradual manner typical
of the capillary instability of a liquid jet issuing into air at rest. Here the jet gradually bends
over toward the direction of the free stream so that both tangential and crossflow compo-
nents of the gas flow are seen by the jet. When the jet is at an angle of about 30� from
the normal to the free stream, the jet breaks into large columns in a manner so sudden that
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Schetz and co-workers (Sherman and Schetz, 1971; Schetz et al., 1980) have used the phrase
‘‘fracture’’ to describe the phenomenon. At this angle, the component of the gas velocity par-
allel to the jet�s direction is approximately sonic . . .’’
Li and Kelly (1992) did not study a jet in crossflow; they studied a liquid in a coflowing air
stream. They also considered the convective and absolute instability of a plane jet and found tran-
sition to absolute instability in the transonic region. They speculate that fracture coincides with
the transition to absolute instability.

The problem considered by Li and Kelly (1992), C/A instability of a plane jet, is rather far from
experiments on crossflow of Sherman and Schetz (1971) and it could be considered in the frame of
temporal combined Rayleigh–Taylor, Kelvin–Helmholtz instability which should show rather
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Table 17
Parameters for Ua = 40 m/s

Fluid Ua (m/s) D‘ (m) Ma We Re m ‘

Water 4.000e+01 3.200e�04 1.178e�01 1.901e�06 1.084e+05 1.800e�02 1.194e�03
Ethanol 4.000e+01 3.200e�04 1.178e�01 7.882e�0.7 7.162e+04 1.500e�02 1.507e�03
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exceptional behavior in transonic flow. This kind of explanation of rapid breakup of a coflowing
jet was given by Varga et al. (2003) and it is based on a secondary RT instability not associated
with absolute instability.



Table 18
Parameters for Ua = 165 m/s

Fluid Ua (m/s) D‘ (m) Ma We Re m ‘

Water 1.650e+02 3.200e�04 4.971e�01 1.990e�06 1.060e+05 1.800e�02 1.066e�03
Ethanol 1.650e+02 3.200e�04 4.971e�01 8.249e�07 7.001e+04 1.500e�02 1.345e�03

Table 19
Parameters for Ua = 265 m/s

Fluid Ua (m/s) D‘ (m) Ma We Re m ‘

Water 2.650e+02 3.200e�04 8.316e�01 2.158e�06 1.018e+05 1.800e�02 8.698e�04
Ethanol 2.650e+02 3.200e�04 8.316e�01 8.947e�07 6.722e+04 1.500e�02 1.097e�03
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14. Conclusions

We studied the temporal instability of a liquid jet in a high speed compressible air stream using
viscous potential flow. Since the shear stress is ignored in viscous potential flow, the analysis is
compatible with the discontinuous profile used in all studies of Kelvin–Helmholtz instability. This
discontinuity is not allowable for real viscous fluids where shear layers develop. Disturbances with
high wave numbers might see the details of the shear layer and alter the stability results in ways
which are presently unknown.

In our analysis, which neglect shear layers, this instability is dominated by capillarity when the
Weber number is large and by Kelvin–Helmholtz instability when the Weber number is small. The
peak growth rates and the associated wavelengths depend strongly on the Mach number and on
the viscosity of the liquid. The growth rates are dramatically larger in the transonic region and the
wavelengths of the peak values are much smaller. Viscosity reduces the magnitude of the growth.
The growth rate for inviscid potential flow monotonically increases as Mach number increases.
For 0 < l‘ < 0.168 cP, the growth rate for viscous potential flow monotonically increases as Mach
number increases. For 0.168 cP < l‘, the growth rate for viscous potential flow has a peak value
when Mach number is nearly one. The peak value decreases as the viscosity l‘ increases. The
growth rates are very sharply peaked near Ma = 1 when the viscosity is larger than some value
near 0.2 cP. The dramatic change in stability of liquid jets in transonic flow predicted by analysis
is possibly related to the dramatic increases in the drag coefficient of spheres and disks in transonic
flow observed in experiments (Howarth (1953, p. 724)). It is not known if jet breakup in transonic
and supersonic flow is caused directly by KH instability or through a secondary RT instability. In
either case, this analysis suggests that the drop fragments would be very small.
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